Novel role of lactosylceramide in vascular endothelial growth factor-mediated angiogenesis in human endothelial cells.
نویسندگان
چکیده
Vascular endothelial growth factor (VEGF) has been implicated in angiogenesis associated with coronary heart disease, vascular complications in diabetes, inflammatory vascular diseases, and tumor metastasis. The mechanism of VEGF-driven angiogenesis involving glycosphingolipids such as lactosylceramide (LacCer), however, is not known. To demonstrate the involvement of LacCer in VEGF-induced angiogenesis, we used small interfering RNA (siRNA)-mediated silencing of LacCer synthase expression (GalT-V) in human umbilical vein endothelial cells. This gene silencing markedly inhibited VEGF-induced platelet endothelial cell adhesion molecule-1 (PECAM-1) expression and angiogenesis. Second, we used D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), an inhibitor of LacCer synthase and glucosylceramide synthase, that significantly mitigated VEGF-induced PECAM-1 expression and angiogenesis. Interestingly, these phenotypic changes were reversed by LacCer but not by structurally related compounds such as glucosylceramide, digalactosylceramide, and ceramide. In a human mesothelioma cell line (REN) that lacks the endogenous expression of PECAM-1, VEGF/LacCer failed to stimulate PECAM-1 expression and tube formation/angiogenesis. In REN cells expressing human PECAM-1 gene/protein, however, both VEGF and LacCer-induced PECAM-1 protein expression and tube formation/angiogenesis. In fact, VEGF-induced but not LacCer-induced angiogenesis was mitigated by SU-1498, a VEGF receptor tyrosine kinase inhibitor. Also, VEGF/LacCer-induced PECAM-1 expression and angiogenesis was mitigated by protein kinase C and phospholipase A2 inhibitors. These results indicate that LacCer generated in VEGF-treated endothelial cells may serve as an important signaling molecule for PECAM-1 expression and in angiogenesis. This finding and the reagents developed in our report may be useful as anti-angiogenic drugs for further studies in vitro and in vivo.
منابع مشابه
Quinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملIn vitro combination therapy of pathologic angiogenesis using anti-vascular endothelial growth factor and anti-neuropilin-1 nanobodies
Objective(s): Emergence of resistant tumor cells to the current therapeutics is the main hindrance in cancer treatment. Combination therapy, which mixes two or more drugs, is a way to overcome resistant problems of cancer cells to current treatments. Nanobodies are promising tools in cancer therapy due to their high affinity as well as high penetration to tumor sites....
متن کاملIn vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies
Objective(s): Lung cancer is the main leading cause of cancer death worldwide. Angiogenesis is the main step in proliferation and spreading of tumor cells. Targeting vascular endothelial growth factor (VEGF) is an effective approach for inhibition of cancer angiogenesis. Nanobodies (NBs) are a novel class of antibodies derived from the camel. Unique characteristics of Nbs like their small size ...
متن کاملVascular Endothelial Growth Factor from Embryonic Status to Cardiovascular Pathology
Vascular endothelial growth factor (VEGF) is a multifunctional cytokine with distinct functions in angiogenesis, lymphangiogenesis, vascular permeability, and hematopoiesis. VEGF is a highly conserved, disulfide-bonded dimeric glycoprotein of 34 to 45 kDa produced by several cell types including fibroblasts, neutrophils, endothelial cells, and peripheral blood mononuclear cells, particularly T ...
متن کاملHuman Trophoblast Progenitor Cells Express and Release Angiogenic Factors
Trophoblast stem cells develop from polar trophoectoderm and give rise to the cells that generate the placenta. Trophoblast cells are responsible for the uterinal invasion and vascular remodeling during the implantation of the embryo. However this knowledge is not yet to be confirmed for trophoblast progenitor cells (TPCs). In this study, we aimed to demonstrate that human TPCs (hTPCs) express ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 97 8 شماره
صفحات -
تاریخ انتشار 2005